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How many genes underlie the occurrence
of common complex diseases in the
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Background Most common human diseases are due to complex interactions among multiple
genetic variants and environmental risk factors. There is debate over whether
variants of a relatively small number of genes, each with weak or modest
individual effects, account for a large proportion of common diseases in the
population, or whether a large number of rare variants with large effects underlie
genetic susceptibility to these diseases. It is not clear how many genes are
necessary to account for an appreciable population-attributable fraction of these
diseases.

Methods In this analysis, we estimated the number of disease susceptibility genes needed
to account for varying population attributable fractions of a common complex
disease, taking into account the genotype prevalence, risk ratios for individual
genes, and the model of gene–gene interactions (additive or multiplicative).

Results Very large numbers of rare genotypes (e.g. those with frequencies of 1 per 5000
or less) are needed to explain 50% of a common disease in the population, even
if the individual risk ratios are large (RR = 10–20). On the other hand, only
~20 genes are usually needed to explain 50% of the burden of a disease in the
population if the predisposing genotypes are common (�25%), even if the
individual risk ratios are relatively small (RR = 1.2–1.5).

Conclusions Our results suggest that a limited number of disease susceptibility genes with
common variants can explain a major proportion of common complex diseases
in the population. Our findings should help focus the search for common genetic
variants that provide the most important predispositions to complex human
diseases.
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for improved treatments.1 The development of human genome
research has been accompanied by a shift of attention from the
classical model of discovering loci involved in single-gene
disorders (Mendelian traits) to elucidation of multiple genetic
factors of small effect involved in common complex diseases.

Most common diseases occur as a result of complex interac-
tions among multiple genetic and environmental predisposing
factors.2–5 The present study provides a general framework for
estimating the number of genes needed to account for an
appreciable proportion of a disease in the population. The
common-disease–common-variant hypothesis holds that the gen-
etic predisposition to common diseases results from multiple,
relatively common genetic variants with small or modest
effects.5,6 An alternative, the heterogeneity hypothesis,
maintains that the genetic predisposition to common diseases is
caused by many different rare genetic variants, with a relatively

The rapid identification of genes that are associated with human
diseases has revolutionized the field of medicine, providing more
accurate diagnosis, prevention opportunities, and the potential
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large effect produced by each allele.4 We do not yet know which
of these hypotheses is more often correct, or the extent to which
some combination of rare alleles with relatively large effects and
common variants with small effects may be important.

Identification of these disease-associated genetic variants
represents a high public health priority because of the
contribution these common conditions make to the total
burden of disease in the population.7 However, it is not clear
how many genetic variants are needed to produce an
appreciable population attributable fraction (PAF) of these
diseases. The PAF may be defined as the proportion of disease
cases in a population that result from the effects of a risk factor,
in this case the genetic predisposition. In this analysis, we
estimated the number of disease susceptibility genes needed to
account for varying PAFs for a common complex disease, taking
into account the number of genes involved, the genotype
prevalence, the risk ratios for individual genetic variants, and
the model of gene–gene interactions.

Methods
For simplicity of illustration, we consider N independent
biallelic disease susceptibility loci; each disease-predisposing
gene is assumed to have the same prevalence and risk ratio. We
also assume that there is only one at-risk genotype for each
disease susceptibility locus. We use ‘disease susceptibility gene’
and ‘genetic variant’ interchangeably, and both terms refer to
the one at-risk genotype for each locus. The effect of each
susceptibility genotype may be dominant or recessive, so it is
important to note that G is the frequency of the at-risk
genotype, not the allele.

Let G be the population prevalence of the susceptibility
genotype at each locus (0 = variant absent and 1 = variant
present) and Rg be the lifetime risk ratio for disease for
genotype = 1 compared with genotype = 0 at one locus. We
assume no confounding or competing risks for Rg. We also
assume that the lifetime risk of disease reflects the joint effects of
measured genetic variants at N unlinked loci, along with other
unmeasured factors. In reality, many genes/loci, environmental
exposures and gene–gene/gene–environment interactions are
probably involved in common diseases. We assume that the
effects of additional genes and exposures are not directly
measured here as part of the risk characterization equations.

For N independent disease susceptibility genotypes, the
population can be partitioned into 2N strata, with a different
genotype prevalence and disease risk associated with each
stratum. The lifetime risk of disease (D) in the population as a
whole is a function of the size and disease risk associated with
each stratum.8 We assume that interactions among multiple
disease susceptibility genes may occur for most common
diseases, but we do not know how these joint effects operate. We
recognize that any set of predisposing genotypes may interact in
a variety of different ways, but for simplicity we consider these
joint effects on either a purely additive or purely multiplicative
scale in this analysis.9 We also assume that these interactive
effects are of the same magnitude for all genotypes involved.

Additive effects model

To illustrate the additive effects model, we consider two disease
susceptibility genes, G1 and G2. Let Rg11, Rg10 and Rg01 be risk

ratios of people having both genes, gene 1 only (G1) or gene 2
only (G2), respectively. The state of no interaction on an
additive scale is given as: (Rg11 � 1) = (Rg10 � 1) + (Rg01 � 1)
or Rg11 = Rg10 + Rg01 � 1.

Assuming additive joint effects of multiple disease susceptibility
genes, the lifetime risk in the population as a whole of a common
disease (D) involving N genes can be modelled as:

D = I

(1)

where I is the background risk of disease in the absence of the
N susceptibility genotypes and J ( j = 0, 1, 2,…, N) indicates the
number of disease susceptibility genotypes.

Multiplicative effects model

The state of no interaction on a multiplicative scale is given
as: Rg11 = Rg10 * Rg01. Assuming multiplicative joint effects of
multiple disease susceptibility genes, the lifetime population risk
of a common disease (D) involving N genes might be modelled as:

D = I

(2)

where I and J are defined as in the Equation (1).

Estimating N

For a given lifetime risk (D), genotype prevalence (G), number
of susceptibility genes (N) and risk ratio (Rg), we can solve
Equation (1) or (2) for I. In a hypothetical population with
multiple disease susceptibility loci, there will be some number of
genes N, given any particular combination of background dis-
ease risk I and risk ratio Rg that satisfies I * [N * Rg � (N � 1)] �1
for the additive model or for the multiplicative model,
i.e. the background risk I multiplied by stratum-specific risk for
disease exceeds 100%. For values of j, for which I * [j *
Rg � (j � 1)] � 1 for the additive model (or for the
multiplicative model), we define the risk to be 1.

Population attributable fraction

In epidemiological research, PAF (also called attributable risk or
aetiologic fraction) is usually defined as the proportion of disease
cases in a population that would be prevented if an exposure
were eliminated, assuming the exposure to be causal. In applying
this concept to genetic predispositions to disease, we recognize
that genetic risk factors cannot be removed, but interventions
could be developed on the basis of information about the
genotype. Therefore, we define PAF for a genetic predisposition
to disease as the proportion of disease cases in a population that
would not occur if interventions prevented the occurrence of
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adverse effects of the genetic variants in that population. For
the disease risk model we used, we can define the PAF as:

, (3)

where D is the population lifetime risk of disease and I is the
background risk of disease in the absence of the genetic
susceptibility variants.10

To estimate the number of genes needed to achieve a
particular PAF with varying genotype prevalence G and risk
ratios Rg, we need to solve Equation (1) or (2) for N. We have
not found a closed form for N that corresponds to the PAF, so we
developed a simple computing algorithm to estimate N for any
given PAF. For example, to estimate the number of genes needed
to achieve a PAF of 30% (target PAF) for a lifetime disease risk
of 5% (D = 5%), genotype prevalence 10% (G = 10%), and risk
ratio 1.5 (Rg = 1.5) using a multiplicative model [Equation (2)],
we start with one gene and solve Equation (2) for I, then use
Equation (3) to calculate the PAF and check if the calculated PAF
is less than, equal to, or greater than the target PAF (30% in this
example). If the calculated PAF is less than the target PAF, we
increase N to two genes, solve Equation (2) for I, then
recalculate the PAF to see if it is less than, equal to, or greater
than the target PAF. We repeat this process until the calculated
PAF is equal to or greater than the target PAF. In this example,
nine or more genes are needed to produce a PAF �30%.

The PAF calculated for the number of genes determined by
this algorithm often is greater than the target PAF, especially if
the genotype is common (prevalence �30%). For example, the
PAF calculated for nine genes in the example given above is
actually 32.3% (not 30% exactly). If the genotype prevalence in
this example were 50% instead of 10%, the estimated PAF
would be 36% for three genes.

Results
For common diseases involving multiple susceptibility genetic
variants with weak to moderate effects (Rg = 1.2–1.5),11–13 the
genotype prevalence plays a dominant role in determining the
number of genes needed to account for an appreciable PAF. For
genotype frequencies of 10%, the number of genes needed to
explain 50% of the burden of disease in the population ranges
from 15 to 50 (Table 1). For very common genotypes
(G � 30%), only 10–20 genes are needed to achieve a PAF of
50%, even if the effect size for each gene is weak (Rg = 1.2), and
regardless of whether the genes exert additive or multiplicative
joint effects.

As few as five disease susceptibility genes with risk ratios in
the range of 1.01–2.00 will often produce a PAF of �30% if the
genotype prevalence is very common (G � 30%, D = 5%)
(Figure 1). For 10 genes, the expected PAF for a disease with a
population risk of 5% is almost always �30% when calculated
using our model (Figure 2), but individual genotype
prevalences of �1% predict that people who have all or even
most of these 10 susceptible genotypes will probably never be
observed. For example, if there are 10 susceptibility genotypes,
each with a population prevalence of 1%, the expected
frequency of people with all 10 susceptibility genotypes would
be 10�20. In reality, most people would have various subsets
of the 10 susceptibility genotypes.14

PAF = 
D � I

D
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Table 1 Number of genes needed to achieve a given population
attributable fraction (PAF) for a complex disease with lifetime risk of
5% in the population and high genotype prevalences and low risk
ratios for each gene

PAF

Genotype prevalence 5% 10% 30% 50%

Additive model

Risk ratio = 1.2

1% 27 56 215a 500a

5% 6 12 43 100

10% 3 6 22 50

20% 2 3 11 25

30% 1 2 8 17

50% 1 2 5 10

Risk ratio = 1.5

1% 11 23 86a 200a

5% 3 5 18 40

10% 2 3 9 20

20% 1 2 5 10

30% 1 1 3 7

50% 1 1 2 4

Multiplicative model

Risk ratio = 1.2

1% 26b 53b 179b 347b

5% 6 11 36b 70b

10% 3 6 19 36b

20% 2 3 10 18

30% 1 2 7 12

50% 1 2 4 8

Risk ratio = 1.5

1% 11b 22b 72b 140b

5% 3 5 15 29b

10% 2 3 8 15b

20% 1 2 4 8

30% 1 1 3 5

50% 1 1 2 4

a Indicates that for some values of j (i.e. lifetime
disease risk is �100% ); for these values of j we set risk = 1.

b Denotes that for some values of j (i.e. lifetime disease risk is
�100%); for these values of j we set risk = 1.

I * Rg
N � 1

I * [ j * Rg � ( j � 1)] � 1

If the susceptibility genotypes are rare (e.g. 1 per 5000), many
genes (N = 183–556) are needed to explain 50% of a common
disease in the population, even with large individual risk ratios
(Rg = 10–20) (Table 2). Many of the combinations of G, RR, and
PAF given in Table 2 predict a lifetime risk for disease �100%
among individuals with all of the susceptibility genotypes,
indicating an inappropriate assumption about the joint effects.
For example, assuming a population lifetime disease risk of 0.1%
and rare susceptibility genotypes, most of the estimates for
number of genes needed to achieve an appreciable PAF
(PAF �10%) for the multiplicative model have , i.e.
the risk is �100% to develop the disease. We used  a much lower

I * Rg
N � 1



lifetime risk for disease in Table 2 than in Table 1 (0.1% vs 5%)
because the predicted risk for disease for almost all scenarios
would be �100% if a common lifetime risk, e.g. 5%, were used,
although the estimated number genes needed for any PAF would
remain unchanged. This demonstrates a limitation of our model
in the situation of multiple rare alleles with high risk ratios.

Example

In the United States, colorectal cancer is the fourth most
common cancer, with an estimated annual incidence of 55.1 per
100 000 population and a lifetime risk of 5.7% in 2000.15

A meta-analysis examined 30 genetic variants in 20 different
genes for colorectal cancer susceptibility.16 The study suggested
that seven genetic variants were associated with the risk of
colorectal cancer. We excluded the aldehyde dehydrogenase 2
(ALDH2) gene, which is only prevalent among Asians, and the
tumour protein p53 (TP53) gene, with which an association had
only been found in one study.16 We included the remaining five

colorectal cancer-associated genetic variants in our example: 
c-Ha-ras1 proto-oncogene (HRAS, rare allele), glutathione S-
transferase theta 1 (GSTT1, null allele), tumour necrosis factor
alpha-chain (TNF-α, a2 allele), N-acetyl transferase-2 (NAT2;
fast acetylation phenotype) and 5,10-methylenete-
trahydrofolate reductase gene (MTHFR, lack of C677T variant).

As shown in Table 3, the prevalence of the four genotypes
and one phenotype (NAT2) considered ranges from 4.0 to
60.0%, the odds ratios range from 1.4 to 2.7 and the PAF for
each genetic variant considered alone ranges from 6.3 to 29.1%.
Assuming that the effects of these five genetic variants are
independent, the population can be partitioned into 32 strata
(Appendix Table A1). The lifetime risk of colorectal cancer (D)
in the population as a whole is a function of each stratum’s size
(G) and associated risk (Rg) [Equation (1) or (2)]. Solving
Equation (1) or (2) for I and using Equation (3) to calculate the
PAF for the five genetic variants together, we estimate a
combined PAF of 53.9% (95% CI 28.7–68.9%) assuming
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Figure 1 Expected population-attributable fraction (PAF) of five disease susceptibility genes with varying genotype prevalences and risk ratios
assuming an additive (top) or multiplicative (bottom) joint effects model and lifetime risk of disease = 5.0%



additive joint effects, and a combined PAF of 63.9% (95% CI
31.5–82.5%) assuming multiplicative joint effects (Table 3). If
we exclude the NAT2 gene (since the phenotype, not the
genotype, is associated with increased risk for colorectal
cancer), the estimated PAFs are 43.2% (95% CI 25.1–57.1%)
and 49.1% (95% CI 27.0–67.0%) for additive and multi-
plicative joint effects, respectively.

Discussion
Identification of genes associated with common complex
diseases is accorded a high public health priority because of the
large contribution these conditions make to the total burden of
disease in the population. Measurement of PAF provides a

public health dimension to the appraisal of risks and creates an
important link between disease causality and public health
action.17 In this paper, we have explored hypothetical scenarios
in which causality is assumed to follow straightforward
polygenic models with simple forms of gene–gene interaction.
In the real world, causality has to be established on the basis of
appraisal of the entire body of evidence,18 and such simple
models of gene action are very unlikely to be encountered.

There is a substantial difference in interpretation of the PAF
related to the genetic contribution to a common complex
disease and interpretation of a conventional attributable
fraction calculated for a single exposure (risk factor) in an
epidemiological study. The PAF is generally considered to be the
fraction of disease cases that could be prevented by eliminating
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Figure 2 Expected population-attributable fraction (PAF) of 10 disease susceptibility genes with varying genotype prevalences and risk ratios
assuming an additive (top) or multiplicative (bottom) joint effects model and lifetime risk of disease = 5.0%. PAF is not plotted if

(additive model) or (multiplicative model), i.e. lifetime disease risk is �100%I * Rg
N � 1I * [N * Rg � ( j � 1)] � 1



a causal exposure. It has been argued that PAF is a meaningless
concept in genetics because genetic risk factors cannot be
removed.19 While it is certainly true that one cannot eliminate
the genetic risk factors an individual has inherited from his or
her parents, we believe that the concept of PAF for genetic
susceptibility provides a useful metric of the potential impact of
interventions that may be developed on the basis of information
about that genotype. Perhaps the most intuitive potential
applications are genotype-specific screening and targeted
interventions. Although targeted interventions are not available
for the majority of mutations that have been identified so far,19

examples such as neonatal screening indicate the potential
importance of such an approach for public health.20 More
generally, knowledge that a group of genetic variants accounts
for a substantial PAF could enhance understanding of disease
pathogenesis and thereby aid in identifying interventions
relevant to the general population. In particular, Mendelian
randomization has been proposed as a means of obtaining
estimates of the effects of environmental exposures in
association studies of functional genetic variants.21–23

A further issue regarding the application of the concept of
PAF to genetic variants is that the genotypes may have
simultaneous effects on many different diseases.19,24 PAF is
disease-specific, but genetic predispositions to common diseases
such as cancer or autoimmunity, for example, often are not. The
attributable community risk (ACR), a measure recently
reintroduced by Wacholder,25 is particularly useful for
comparing the potential population impact of complex
genotypes on several different diseases. The ACR is the
proportion of the population that develops disease that is
attributable to an exposure or, in the current context, a disease
susceptibility genotype. The ACR is related to PAF:

where D is the lifetime risk of disease. For example, for a disease
for which the lifetime risk is 5% and estimated PAF 50%, the
corresponding ACR is 2.5%. For a disease with a lifetime risk of
1% and PAF 50%, the corresponding ACR is 0.05%.

ACR = PAF * D,
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Table 2 Number of genes needed to achieve a given population
attributable fraction (PAF) for a complex disease with lifetime risk
of 0.1% in the population and varying genotype prevalences and
risk ratios

PAF

Genotype prevalence 5% 10% 30% 50%

Additive model

Risk ratio = 10

1/10,000 59 121a 477a �1000a

2/10,000 30 62 239a 556a

1/1,000 6 13 48 112

2/1,000 3 7 24 56

Risk ratio = 20

1/10,000 28 59a 226a 527a

2/10,000 14 30 113a 264a

1/1,000 3 6 23 53

2/1,000 2 3 12 27

Multiplicative model

Risk ratio = 10

1/10,000 58b 118b 397b 771b

2/10,000 29b 59b 199b 386b

1/1,000 6 12b 40b 78b

2/1,000 3 6 20b 39b

Risk ratio = 20

1/10,000 28b 56b 188b 366b

2/10,000 14b 28b 95b 183b

1/1,000 3 6b 20b 37b

2/1,000 2 3 10b 19b

a Indicates that for some values of j (i.e. lifetime
disease risk is �100%); for these values of j we set risk = 1.

b Denotes that for some values of j (i.e. lifetime disease risk is
�100%); for these values of j we set risk = 1.

I * Rg
N � 1

I * [ j * Rg � ( j � 1)] � 1

Table 3 Prevalence, risk (95% CI), and population attributable fraction (PAF) (95% CI) of five genetic variants for colorectal cancer susceptibility

Genotype Odds ratio PAF %
Genetic variants Risk group prevalence (%) (95% CI) (95% CI)a

HRAS1 Rare allele vs 4.0 2.67 (1.47–4.85) 6.3 (1.9–13.3)
others

GSTT1 Null vs others 37.6 1.37 (1.17–1.60) 12.2 (6.0–18.4)

TNF-α α2 allele vs others 39.2 2.02 (1.51–2.71) 28.6 (10.0–40.1)

NAT2 [imputed from Fast acetylation vs [60.3] 1.68 (1.11–2.46) 29.1 (6.2–46.8)
phenotype] others

MTHFR Wild-type vs 42.3 1.35 (1.12–1.64) 12.9 (4.8–21.3)
variant (C677T)

Five genes combined

Additive model – – – 53.9 (28.7–68.9)

Multiplicative model – – – 63.9 (31.5–82.5)

HRAS1, c-Ha-ras1 proto-oncogene; GSTT1, glutathione S-transferase theta 1; TNF-α, tumor necrosis factor alpha-chain; NAT2, N-acetyl transferase-2 gene;
MTHFR, 5,10-methylenetetrahydrofolate reductase gene.
a The lower and upper 95% CIs of the PAF were calculated by taking lower and upper 95% odds ratio estimates, respectively.



There is controversy over whether the genetic basis for
susceptibility to common diseases results from a relatively small
number of common alleles that each produce only a modest
predisposition or a larger number of rare variants each of which
has a much greater predisposing effect4,5,26–28 Our analysis
suggests that genetic information would have a much greater
public health impact if the first scenario, the common-
disease–common-variant hypothesis were correct. From a public
health perspective, the important issue is to identify common
genetic factors that lead to strategies for the prevention or
improved treatment of common complex disease in these
predisposed individuals. Depending on the nature of the
gene–environment interactions involved, pharmacological,
dietary, or lifestyle interventions among genetically predisposed
individuals may have a disproportionately large effect on the
associated morbidity and mortality in the population as a whole.
This targeted approach to prevention may be especially useful in
the case of diseases with major environmental components, such
as type 2 diabetes and cardiovascular diseases.7,29

Most common human diseases are due to complex interactions
among multiple genetic variants and environmental risk factors.2,3

The present study provides a general framework for estimating the
number of genes needed to account for an appreciable proportion
of a disease in the population, but different methods are required
to estimate the separate effects of genes and environmental
exposures or of gene–environment interactions.30 Our model can
be extended to include gene–environment interactions by adding
additional terms in each of the 2N strata. Persons exposed to
environmental risk factors may be considered to be a higher-risk
subgroup within each stratum. Considering both genetic and
environmental risk factors together may permit assessment of the
relative benefits and feasibility of eliminating environmental risk
factors within genetically predisposed groups as opposed to
eliminating these exposures in the population as a whole.
Although eliminating environmental risk factors and promoting a
healthy lifestyle are usually recommended for the population as a
whole regardless of genetic predisposition, there are situations in
which targeted intervention may be more cost-effective.31

For most common diseases, we do not understand the nature
of the joint effects among predisposing genes. We considered only
the simplest additive and multiplicative models and assumed that
the multiple disease susceptibility genes are unlinked. In reality,
the gene–gene and gene–environment interactions for common
diseases are likely to be much more complex, and a model
combining both additive and multiplicative interactions might
more accurately reflect biological reality.32

Furthermore, the models we considered have some limita-
tions. For a fixed lifetime risk of disease D in the population as

a whole, the maximum number of genes attainable (keeping
risk of the disease �100%) is

for the additive model and

for the multiplicative model. As the lifetime risk of disease
becomes more common, the background risk I increases, and
the number of genes that satisfy the conditions of the model
becomes smaller. Alternatively, for the multiplicative effect
model, one may use the odds ratio instead of the risk ratio in a
logistic risk model to estimate the population risk of a common
disease D involving N genes. The logistic risk model is free from
the constraint of the background risk I multiplied by stratum-
specific risk for disease �100%.

We employed an epidemiological approach to estimate the
number of genes needed to account for an appreciable PAF for
common diseases. Another commonly used approach is the
mutifactorial-threshold model, which postulates a continuously
distributed latent trait, liability, that causes the disease.33 Two
additive, normally-distributed components underlie liability—a
genetic component produced by numerous small, additive
(polygenic) effects, and a random environmental component.
An individual is affected by the disease when her or his liabil-
ity exceeds a particular threshold. Risch has discussed the
multifactorial-threshold model and its relationship to
epidemiological attributable risk in common forms of cancer.34

He introduced the concept of PAF related to genetic factors and
pointed out its dependence on the combined effect of all
susceptibility alleles at disease-predisposing loci.

Our findings have a potential impact on narrowing the search
for disease susceptibility genes for complex human diseases. For
common genetic variants (G � 10%), only a limited number of
genes are needed to produce an appreciable PAF, even if the
disease risk associated with each gene is moderate or weak (e.g.
Rg � 1.5). From a public health point of view, identification of
these genes should receive high priority. On the other hand, the
PAF associated with rare genetic variants (G � 1/1000) tends to
be small, and a large number of genes (N � 150) are needed to
produce an appreciable PAF, even if the risk associated with each
gene is strong (Rg � 10). These patterns suggest that greater
public health importance is likely to be associated with common
disease-predisposing genetic variants than with rare variants,
even if the rare variants each produce a higher relative risk.

N � 
1

I * Rg
N

N � 
1

I[Rg � ( j � 1)]
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KEY MESSAGES

• Most common human diseases result from complex interactions among multiple genetic variants and environmental risk factors.

• Variants of as few as 20 susceptibility genes, each of which has weak to moderate individual effects, may account for �50% of

the burden of most common complex diseases if each variant is common in the population.

• Identifying these common variants is potentially of great public health importance because their recognition may provide

opportunities for screening and targeted reduction of modifiable environmental risk factors.
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Appendix

Table A1 Expected population prevalence, risk and associated population attributable fraction (PAF) of selected genetic variants susceptibility to
colorectal cancer

Expected
Genetic variantsa

population Risk PAF %

HRAS1 GSTT1 TNF-α NAT2 MTHFR prevalence%b Additive Multiplicative Additive Multiplicative

0 0 0 0 0 8.1 1.0 1.0 – –

1 0 0 0 0 0.3 2.7 2.7 0.3 0.2

0 1 0 0 0 4.9 1.4 1.4 0.8 0.7

0 0 1 0 0 5.2 2.0 2.0 2.4 1.9

0 0 0 1 0 12.3 1.7 1.7 3.8 3.0

0 0 0 0 1 6.4 1.4 1.4 1.0 0.8

1 1 0 0 0 0.2 3.0 3.7 0.2 0.2

1 0 1 0 0 0.2 3.7 5.4 0.3 0.3

1 0 0 1 0 0.5 3.4 4.5 0.6 0.6

1 0 0 0 1 0.3 3.0 3.6 0.3 0.3

0 1 1 0 0 3.1 2.4 2.8 2.0 2.0

0 1 0 1 0 7.4 2.1 2.3 3.6 3.5

0 1 0 0 1 3.9 1.7 1.9 1.3 0.2

0 0 1 1 0 7.9 2.7 3.4 6.2 6.8

0 0 1 0 1 4.1 2.4 2.7 2.6 2.6

0 0 0 1 1 9.7 2.0 2.3 4.6 4.4

1 1 1 0 0 0.1 4.1 7.4 0.2 0.3

1 1 0 1 0 0.3 3.7 6.1 0.4 0.6

1 1 0 0 1 0.2 3.4 4.9 0.2 0.2

1 0 1 1 0 0.3 4.4 9.1 0.5 1.0

1 0 1 0 1 0.2 4.0 7.3 0.2 0.4

1 0 0 1 1 0.4 3.7 6.1 0.5 0.7

0 1 1 1 0 4.8 3.1 4.6 4.5 6.3

0 1 1 0 1 2.5 2.7 3.7 2.0 2.5

0 1 0 1 1 5.8 2.4 3.1 3.8 4.5

0 0 1 1 1 6.3 3.1 4.6 5.9 8.1

1 1 1 1 0 0.2 4.7 12.4 0.3 0.8

1 1 1 0 1 0.1 4.4 10.0 0.2 0.3

1 1 0 1 1 0.2 4.1 8.3 0.3 0.6

1 0 1 1 1 0.3 4.7 12.2 0.5 1.1

0 1 1 1 1 3.8 3.4 6.3 4.2 7.2

1 1 1 1 1 0.2 5.1 16.8 0.3 0.9

a HRAS1, c-Ha-ras1 proto-oncogene: rare allele vs others; GSTT1, glutathione S-transferase theta 1: null vs others; TNF-α, tumor necrosis factor alpha-chain
gene: a2 allele vs others; NAT2, N-acetyl transferase-2 gene (imputed phenotype): fast-acetylation vs others; MTHFR, 5,10-methylenetetrahydrofolate
reductase gene: wild-type vs C677T variant. 1 indicates the present of the genetic variants and 0 indicates the absence.

b We assume the independent assortment of multiple genetic variants in the population.


